
DevOps Syllabus 
 

RHCSA 
1) Understanding and Using Essential Tools: 

• Accessing the command line. 

• Managing files from the command line. 

• Using input-output redirection. 

• Managing text files. 
2) Operating Running Systems: 

• Booting into different run levels. 

• Identifying processes and controlling them. 

• Managing system services (start, stop, enable, disable). 

• Configuring systems to boot automatically. 
3) Configuring Local Storage: 

• Partitioning and formatting storage devices. 

• Creating and managing filesystems. 

• Mounting and unmounting filesystems. 

• Extending logical volumes. 
4) Managing Users and Groups: 

• Creating, modifying, and deleting users. 

• Creating, modifying, and deleting groups. 

• Managing user accounts and group memberships. 
5) Configuring Network Services: 

• Configuring network interfaces. 

• Configuring hostname resolution (DNS). 

• Configuring network time synchronization (NTP). 

• Configuring basic firewall settings (firewalld). 
6) Managing Security: 

• Configuring firewall settings. 

• Configuring SELinux settings. 

• Setting file permissions and ownership. 

• Creating and using access control lists (ACLs). 
7) Working with Containers: 

• Understanding container technology. 

• Managing containers with Podman or Docker. 
8) Automation with Ansible: 

• Understanding Ansible concepts and architecture. 

• Writing and using Ansible playbooks for system configuration. 
 



 

 

 

Ansible 
1) Introduction to Ansible: 

• Understanding configuration management and automation. 

• Introduction to Ansible: architecture, components, and terminology. 

• Installing Ansible and configuring the control node. 
2) Ansible Basics: 

• Ansible inventory: defining hosts and groups. 

• Writing and executing ad-hoc commands. 

• Working with playbooks: YAML syntax, structure, and best practices. 

• Ansible roles: organizing and reusing playbooks. 
3) Managing Inventory and Variables: 

• Dynamic inventory: integrating with cloud providers, external sources, and custom 
scripts. 

• Host and group variables: defining variables for specific hosts or groups. 

• Using facts: gathering information about managed hosts. 
4) Working with Modules: 

• Understanding Ansible modules: core, custom, and community modules. 

• Commonly used modules: file, package, service, user, template, command, shell, and 
copy. 

• Using modules in playbooks to perform tasks on managed hosts. 
5) Managing Files and Directories: 

• Working with files and directories: creating, copying, moving, and deleting files. 

• Managing file permissions and ownership. 

• Using templates to dynamically generate configuration files. 
6) Managing Packages and Software: 

• Installing, updating, and removing packages. 

• Managing software repositories. 

• Managing application services: starting, stopping, and restarting services. 
7) Managing Users and Groups: 

• Managing user accounts: creating, modifying, and deleting users. 

• Managing user groups: creating, modifying, and deleting groups. 

• Managing SSH keys and authentication. 
8) Working with Roles: 

• Understanding Ansible roles: structure, tasks, handlers, variables, and templates. 

• Creating and using roles to organize and modularize playbooks. 
9) Ansible Vault: 



• Securing sensitive data with Ansible Vault. 

• Encrypting and decrypting files using Vault. 

• Integrating Vault with playbooks and roles. 
10) Advanced Ansible Features: 

• Ansible loops and conditionals: iterating over tasks and applying conditional logic. 

• Using Ansible tags: selectively executing tasks within playbooks. 

• Ansible Galaxy: discovering and using pre-built roles from the Ansible community. 
11) Best Practices and Troubleshooting: 

• Ansible best practices: organizing playbooks, writing clean and maintainable code. 

• Troubleshooting common issues and errors in Ansible automation. 

 

AWS 
1) AWS Fundamentals: 

• Understanding the AWS Global Infrastructure: regions, availability zones, edge locations. 

• AWS Services Overview: Compute, Storage, Database, Networking, Security, and 
Management services. 

2) Identity and Access Management (IAM): 

• IAM Users, Groups, Roles, and Policies. 

• IAM best practices and security principles. 
3) Compute Services: 

• Amazon Elastic Compute Cloud (EC2): Instance types, AMIs, Launch configurations, Auto 
Scaling, and Elastic Load Balancing (ELB). 

• AWS Lambda: Serverless compute service for running code without provisioning or 
managing servers. 

• AWS Elastic Beanstalk: Platform as a Service (PaaS) for deploying and managing web 
applications. 

4) Storage Services: 

• Amazon Simple Storage Service (S3): Object storage service for storing and retrieving 
data. 

• Amazon Elastic Block Store (EBS): Block-level storage volumes for EC2 instances. 

• Amazon Elastic File System (EFS): Managed file storage service for EC2 instances. 

• Amazon Glacier: Low-cost storage service for data archiving and long-term backup. 
5) Database Services: 

• Amazon Relational Database Service (RDS): Managed relational database service for 
MySQL, PostgreSQL, Oracle, SQL Server, and Aurora. 

• Amazon DynamoDB: Fully managed NoSQL database service. 

• Amazon Redshift: Fully managed data warehouse service. 
6) Networking and Content Delivery: 



• Amazon Virtual Private Cloud (VPC): Networking service for creating isolated virtual 
networks. 

• AWS Direct Connect: Dedicated network connection between on-premises data centers 
and AWS. 

• Amazon Route 53: Scalable Domain Name System (DNS) web service. 

• Amazon CloudFront: Content Delivery Network (CDN) service for delivering static and 
dynamic web content. 

7) Monitoring and Management: 

• Amazon CloudWatch: Monitoring and observability service for AWS resources. 

• AWS CloudTrail: Auditing and logging service for tracking user activity and API usage. 
8) Best Practices and Troubleshooting: 

• Troubleshooting common issues and errors in AWS 
 

GIT & GitHub 
1) Introduction to Version Control: 

• Understanding the need for version control. 

• Overview of centralized vs. distributed version control systems. 

• Introduction to Git: history, features, and advantages. 
2) Getting Started with Git: 

• Installing Git: setup and configuration. 

• Basic Git commands: init, clone, add, commit, status, diff, log, branch, checkout, merge, 
and reset. 

• Creating and managing Git repositories. 
3) Working with Branches and Merging: 

• Understanding branches: creation, deletion, listing. 

• Branching strategies: feature branches, release branches, hotfix branches. 

• Merging changes: fast-forward, recursive, and conflict resolution. 
4) Collaborating with Remote Repositories: 

• Introduction to remote repositories. 

• Configuring remote connections: adding, renaming, and removing remotes. 

• Pushing and pulling changes to and from remote repositories. 

• Resolving conflicts during collaboration. 
5) GitHub Overview: 

• Introduction to GitHub: features, benefits, and use cases. 

• Creating and managing GitHub repositories. 

• Collaborating on GitHub: forking, cloning, pull requests, code reviews. 

• GitHub workflows: issues, milestones, labels, and projects. 
6) Advanced Git Topics: 

• Git configuration: global vs. local settings, aliases. 

• Rewriting history: git rebase, interactive rebase. 

• Cherry-picking and reverting commits. 

• Git hooks: pre-commit, post-commit, pre-push, post-receive. 



7) Git Best Practices: 

• Branching strategies and workflows: GitFlow, GitHub Flow. 

• Commit message conventions: format, length, clarity. 

• Code review best practices: etiquette, constructive feedback. 
8) GitHub Pages and GitHub Actions: 

• Hosting static websites with GitHub Pages. 

• Automating workflows with GitHub Actions. 

• Creating custom workflows: CI/CD pipelines, automated testing, and deployment. 
9) Git Tips and Tricks: 

• Git stash: saving and applying temporary changes. 

• Git bisect: finding the commit that introduced a bug. 

• Git blame: identifying the author of specific lines of code. 

• Gitignore: ignoring files and directories in Git repositories. 
10) Git and GitHub Integration: 

• Integrating Git with IDEs and text editors. 

• Using Git with Continuous Integration (CI) tools like Jenkins, Travis CI, or CircleCI 
 

Jenkins 
1) Introduction to Jenkins: 

• Overview of continuous integration and continuous delivery (CI/CD). 

• Introduction to Jenkins: history, features, and advantages. 

• Understanding Jenkins architecture: master and agent nodes, executors, and 
workspaces. 

2) Installing and Configuring Jenkins: 

• Installing Jenkins: setup and initial configuration. 

• Configuring Jenkins plugins: installing and managing plugins. 

• Configuring global settings: system configuration, security settings, and notification 
settings. 

3) Creating Jenkins Jobs: 

• Understanding Jenkins jobs: freestyle projects, pipeline projects, and multi-branch 
pipeline projects. 

• Creating and configuring freestyle projects: defining source code management, build 
triggers, build steps, and post-build actions. 

• Introduction to Jenkinsfile: defining pipelines as code. 
4) Working with Jenkins Pipelines: 

• Understanding Jenkins pipeline: syntax, stages, steps, and directives. 

• Writing and executing declarative pipelines. 

• Writing and executing scripted pipelines. 

• Parameterized builds: passing parameters to Jenkins pipelines. 
5) Artifact Management and Deployment: 

• Artifact management with Jenkins: archiving build artifacts. 



• Automated deployment pipelines: deploying applications to test, staging, and 
production environments. 

• Integration with deployment tools like Docker, Kubernetes, or Ansible. 
6) Monitoring and Reporting: 

• Monitoring Jenkins builds and pipelines: viewing build logs, console output, and build 
trends. 

• Generating and viewing reports: test reports, code coverage reports, and trend analysis. 
7) Scaling and High Availability: 

• Scaling Jenkins: configuring distributed builds with master/slave architecture. 

• High availability and fault tolerance: setting up Jenkins clusters and failover 
mechanisms. 

8) Best Practices and Troubleshooting: 

• Jenkins best practices: pipeline design patterns, efficient job configuration, and 
optimization. 

• Troubleshooting common issues: diagnosing build failures, pipeline errors, and 
performance bottlenecks. 

Terraform 
1) Introduction to Terraform and AWS: 

• Understanding infrastructure as code (IaC) concepts. 

• Introduction to Terraform: features, benefits, and advantages. 

• Overview of AWS services and their role in Terraform infrastructure. 
2) Installing and Configuring Terraform for AWS: 

• Installing Terraform: setup and configuration. 

• Configuring AWS credentials and authentication for Terraform. 
3) Terraform Configuration Basics: 

• Understanding Terraform configuration files: main.tf, variables.tf, outputs.tf. 

• Terraform providers and resources: AWS provider, EC2 instance, VPC, subnet, etc. 

• Declaring infrastructure using the HashiCorp Configuration Language (HCL). 
4) Managing AWS Infrastructure with Terraform: 

• Creating and managing EC2 instances with Terraform. 

• Configuring networking components: VPC, subnet, route table, internet gateway. 

• Managing security groups and access control with Terraform. 
5) Terraform State Management: 

• Understanding Terraform state files: local vs. remote state. 

• Terraform state locking: preventing concurrent modifications. 

• Configuring and using remote state backends with AWS S3 and DynamoDB. 
6) Advanced Terraform Features for AWS: 

• Using Terraform modules for code reuse and organization. 

• Dynamic infrastructure with Terraform: loops, conditionals, and expressions. 

• Managing multiple environments (dev, stage, prod) with workspaces. 
7) Managing AWS Services with Terraform: 

• Provisioning AWS managed services: RDS, S3, DynamoDB, etc. 



• Creating AWS Lambda functions and API Gateway endpoints. 

• Managing IAM roles, policies, and users with Terraform. 
8) Terraform Best Practices for AWS: 

• Terraform project structure and organization. 

• Using Terraform variables, locals, and outputs effectively. 

• Implementing modular and reusable Terraform code with modules. 

• Deployment Strategies with Terraform: 

• Deploying infrastructure changes with Terraform apply. 

• Automating infrastructure deployment with CI/CD pipelines. 

• Blue/green deployments and rollback strategies with Terraform. 
9) Security and Compliance with Terraform: 

• Implementing security best practices in Terraform configurations. 

• Using AWS IAM policies for least privilege access. 

• Ensuring compliance with AWS security standards and regulations. 
10) Terraform and AWS Integration: 

• Integrating Terraform with AWS services and APIs. 

• Leveraging AWS CloudFormation with Terraform for resource provisioning. 

• Orchestrating AWS infrastructure with Terraform and other AWS services (e.g., 
CodeDeploy, CodePipeline). 

 

Docker 
1) Introduction to Containerization: 

• Understanding containerization and its benefits. 

• Comparison of containers vs. virtual machines. 

• Introduction to Docker: history, features, and advantages. 
2) Installing and Configuring Docker: 

• Installing Docker Engine: setup and configuration on different platforms. 

• Configuring Docker environment variables and settings. 

• Docker Editions: Community Edition (CE) and Enterprise Edition (EE). 
3) Docker Architecture: 

• Understanding Docker architecture: Docker daemon, client, images, containers, and 
registries. 

• Docker Engine components: containerd, runc, and Docker CLI. 
4) Working with Docker Images: 

• Understanding Docker images: layers, tags, and registries. 

• Docker Hub: exploring and pulling images from the public repository. 

• Building Docker images: creating Dockerfiles, defining dependencies, and best practices. 
5) Managing Docker Containers: 

• Creating Docker containers: running containers from images, specifying container 
configurations. 

• Managing container lifecycle: starting, stopping, pausing, and removing containers. 



• Docker container networking: connecting containers, exposing ports, and linking 
containers. 

6) Docker Volumes and Data Management: 

• Understanding Docker volumes: persistent storage for containers. 

• Managing data in Docker containers: mounting volumes, volume drivers, and volume 
plugins. 

• Data persistence and backup strategies for Docker containers. 
7) Docker Compose: 

• Introduction to Docker Compose: defining and running multi-container applications. 

• Writing Docker Compose YAML files: defining services, networks, volumes, and 
environment variables. 

• Managing multi-container applications with Docker Compose. 
8) Docker Networking: 

• Understanding Docker networking models: bridge, host, overlay, and MACVLAN 
networks. 

• Configuring container networking: exposing ports, creating custom networks, and 
network isolation. 

• Advanced networking features: Docker Swarm networking, service discovery, and load 
balancing. 

9) Docker Orchestration with Docker Swarm: 

• Introduction to Docker Swarm: container orchestration and clustering. 

• Setting up a Docker Swarm cluster: manager and worker nodes. 

• Deploying and managing services with Docker Swarm: scaling, updating, and rolling 
updates. 

10) Monitoring and Logging with Docker: 

• Monitoring Docker containers and hosts: collecting metrics and logs. 

• Docker logging drivers: configuring log options and forwarding logs to external systems. 

• Container observability tools: Docker Stats, Docker Events, and third-party monitoring 
solutions. 

 

Kubernetes 
1) Introduction to Kubernetes: 

• Understanding container orchestration and its benefits. 

• Introduction to Kubernetes: history, features, and advantages. 

• Comparison of Kubernetes with other container orchestration tools. 
2) Kubernetes Architecture: 

• Understanding Kubernetes architecture: master components, node components, and 
the Kubernetes API. 

• Kubernetes components: kube-apiserver, kube-controller-manager, kube-scheduler, 
kubelet, and kube-proxy. 

• Kubernetes networking model: pod networking, services, and ingress. 
3) Installing and Configuring Kubernetes: 



• Installing Kubernetes: setup and configuration on different platforms (local, cloud, on-
premises). 

• Configuring Kubernetes cluster components: etcd, API server, kubelet, kube-proxy, and 
container runtime. 

• Choosing a Kubernetes distribution: Kubernetes, k3s, Minikube, kops, etc. 
4) Working with Kubernetes Objects: 

• Understanding Kubernetes objects: pods, deployments, services, ingress, secrets, 
configmaps, persistent volume claims, etc. 

• Creating and managing Kubernetes objects using YAML manifests and imperative 
commands. 

• Managing Kubernetes resources: labeling, annotating, and organizing resources. 
5) Pods and Containers: 

• Understanding pods: containers, volumes, and pod lifecycle. 

• Creating and managing pods: running single and multi-container pods. 

• Configuring pod specifications: resource requests, limits, environment variables, and 
secrets. 

6) Deployments and ReplicaSets: 

• Introduction to Deployments and ReplicaSets: managing application deployments and 
scaling. 

• Creating and managing Deployments: rolling updates, rollbacks, and scaling applications. 

• Configuring Deployment strategies: rolling updates, blue-green deployments, and canary 
deployments. 

7) Services and Networking: 

• Understanding Kubernetes services: service types, selectors, and endpoints. 

• Configuring service networking: cluster IP, node port, load balancer, and external name 
services. 

• Network policies: controlling traffic between pods and enforcing network policies. 
8) Storage and Volumes: 

• Understanding Kubernetes storage options: volumes, persistent volume claims (PVCs), and 
storage classes. 

• Configuring persistent storage for stateful applications. 

• Using storage providers: local storage, cloud storage, and storage plugins. 
9) Cluster Management: 

• Managing Kubernetes clusters: adding and removing nodes, upgrading clusters, and cluster 
maintenance. 

• Managing cluster resources: quotas, limits, and resource allocation. 

 


